Near Isometric Biomass Partitioning in Forest Ecosystems of China
نویسندگان
چکیده
Based on the isometric hypothesis, belowground plant biomass (MB) should scale isometrically with aboveground biomass (MA) and the scaling exponent should not vary with environmental factors. We tested this hypothesis using a large forest biomass database collected in China. Allometric scaling functions relating MB and MA were developed for the entire database and for different groups based on tree age, diameter at breast height, height, latitude, longitude or elevation. To investigate whether the scaling exponent is independent of these biotic and abiotic factors, we analyzed the relationship between the scaling exponent and these factors. Overall MB was significantly related to MA with a scaling exponent of 0.964. The scaling exponent of the allometric function did not vary with tree age, density, latitude, or longitude, but varied with diameter at breast height, height, and elevation. The mean of the scaling exponent over all groups was 0.986. Among 57 scaling relationships developed, 26 of the scaling exponents were not significantly different from 1. Our results generally support the isometric hypothesis. MB scaled near isometrically with MA and the scaling exponent did not vary with tree age, density, latitude, or longitude, but increased with tree size and elevation. While fitting a single allometric scaling relationship may be adequate, the estimation of MB from MA could be improved with size-specific scaling relationships.
منابع مشابه
Isometric biomass partitioning pattern in forest ecosystems: evidence from temporal observations during stand development
1. Knowledge of biomass partitioning is essential for estimating spatial patterns and temporal dynamics of root biomass in terrestrial ecosystems. The isometric hypothesis predicts that aboveground biomass scales isometrically with belowground biomass across both individual plants and community types (i.e. the slope of the log–log relationship between aboveand belowground biomass is not signifi...
متن کاملDynamics of Coarse Woody Debris Characteristics in the Qinling Mountain Forests in China
Coarse woody debris (CWD) is an essential component in defining the structure and function of forest ecosystems. Long-term dynamics of CWD characteristics not only affect the release rates of chemical elements from CWD, but also the species diversity of inhabiting plants, animals, insects, and microorganisms as well as the overall health of ecosystems. However, few quantitative studies have bee...
متن کاملBiomass partition and carbon storage of Cunninghamia lanceolata chronosequence plantations in Dabie Mountains in East China
The quantification of biomass carbon pools is important for understanding carbon cycling in forest ecosystems. This study was designed to reveal the effects of stand age on biomass partitioning and carbon storage of Chinese fir plantation stands in Dabie Mountains of Anhui, East China. A total of six even-aged Chinese fir plantation stands along an age-sequence from 10 to 50 years were selected...
متن کاملBiogeographical patterns of biomass allocation in leaves, stems, and roots in China’s forests
To test whether there are general patterns in biomass partitioning in relation to environmental variation when stand biomass is considered, we investigated biomass allocation in leaves, stems, and roots in China's forests using both the national forest inventory data (2004-2008) and our field measurements (2011-2012). Distribution patterns of leaf, stem, and root biomass showed significantly di...
متن کاملSinks for Inorganic Nitrogen Deposition in Forest Ecosystems with Low and High Nitrogen Deposition in China
We added the stable isotope (15)N in the form of ((15)NH4)2SO4 and K(15)NO3 to forest ecosystems in eastern China under two different N deposition levels to study the fate of the different forms of deposited N. Prior to the addition of the (15)N tracers, the natural (15)N abundance ranging from -3.4‰ to +10.9‰ in the forest under heavy N deposition at Dinghushan (DHS), and from -3.92‰ to +7.25‰...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014